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Theory of non-Markovian activated rate processes for an arbitrarily shaped potential barrier
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The Mel'nikov-Meshkov(MM) turnover theoryJ. Chem. Phys85, 1018(1986)] for the escape rate of a
particle from a metastable state is extended to a non-Markovian activated rate process in a potential with an
arbitrary barrier shape. The key points of the extension are a generalized expression for the Kramers-Grote-
Hynes transmission coefficient and a properly defined energy loss of the particle per oscillation. The former is
derived by approximately solving the respective Fokker-Planck equation, while the latter is obtained from the
deterministic particle dynamics. The resulting overall rate expression interpolates the correct limiting behavior
for both weak and strong friction. Its validity is tested by comparing with exact numerical rates in potentials
with parabolic, cusped, and quartic barriers. In all these cases we obtain excellent agreement between the
theory and estimates of the rates from numerical calculat{@k063-651X98)04509-7

PACS numbsg(s): 05.40:+j, 82.20.Db, 82.20.Fd

I. INTRODUCTION limiting Kramers result§1]. The particular advance in this
area can largely be attributed to Mel'nikov and Meshkov
The thermally activated escape of a system from a metadMM) [4]. These authors developed a beautiful approach for
stable state by crossing a barrier represents a decisive steptie weak damping regime. The basic steps of the approach
the dynamics of various realistic processes. Ever since thare reducing the problem to an integral equation in energy
pioneering contribution of Arrhenius, the evaluation of thevariables and solving this equation by the Wiener-Hopf
escape rate has become one of the most fundamental prolmethod. An expression for the rate that holds at arbitrary
lems in physics and chemistfyor reviews of the field, see damping was obtained by using ad hoc multiplicative
Refs.[1] and[2]). The modern theory of activated rate pro- factor to assure the changeover from the weak damping to a
cesses is essentially due to Kramgg$, who realized the strong ond4].
role of the interaction of the system with a surrounding heat Since the Markovian assumption is not always met in
bath and fully took it into account for a simple model. The physical applications, generalized Langevin equations pro-
Kramers model consists of a single mechanical particle movposed by Zwanzid5] have been introduced to cover more
ing on a metastable potential and interacting with a heat bathlgeneral environments that cause random forces with finite
The heat bath causes a velocity proportional friction forcecorrelation times[6]. A systematic solution of the non-
and a random force, the former extracting and the latter sugMarkovian turnover problem was given by Pollak, Grabert,
plying energy. The correlation time of the random force isand Hanggi (PGH) [7], who rederived the MM turnover for-
supposed to be vanishingly small such that a Markovian promula without any ad hocbridging. For achieving this, PGH
cess results for the considered system. Kramers showed thalaborated a theory that combines the normal mode tech-
depending on the coupling strengthiction coefficien} v, nique, as well as the approach by Mel'nikov and Meshkov.
there are two qualitatively different mechanisms determiningRecently, both turnover theories have found various gener-
the escape process. In the weak friction limit the energy oflizations to cases with state-dependent fricf®hand mul-
the particle is an almost conserved quantity undergoing &éidimensional systemgo].
slow diffusion process, so that the rate is determined by the All the investigations mentioned above make extensive
exchange of energy between the particle and the thth use of a parabolic approximation for the barrids(x)
so-called energy diffusion regimeOn the other hand, for =—1w?x?, though parabolic barriers are not the generic
moderate to large friction the heat bath couples sufficientlycase in real activated rate processes. For example, the barrier
strongly to maintain a thermal equilibrium within the well. of charge transfer reactions is often of a cusp-shaped form
The nonequilibrium effects associated with the escape dy10]. Kramers[3] also considered the case of a symmetric
namics are then restricted to the immediate vicinity of thecusped barrierJ (x) = —a|x|. However, the rate expression
barrier top. Consequently, the passage over the barrier is thee derived in this case is valid only in the strong friction
rate determining stefthe spatial diffusion regime In the  (SmoluchowsKi limit. Various rate expressions have been
former limit the rate increases with the friction coefficient derived that agree in the limiting case of strong friction with
while in the latter case it decreases with increagindgram-  the Kramers result for a cusped potential and, in the limit of
ers derived explicit expressions for the escape rate in thesgeak friction with the rate obtained from the transition state
two regimes and noted the existence of a turnover region. theory(TST) [11-15. An analogous interpolating formula is
The turnover problem was actively studied in the 1980sknown for a quartic barrierJ (x) = — 2ax* [1]. Only very
Many different formulas were suggested to bridge the twarecently, Berezhkovskiet al. [16] have extended this for-
mula to an arbitrarily shaped barrie(x) = — (a/a)|x|“.
Their generalization agrees with the known rate expressions
*Permanent address: Institute for High Temperatures, 13/1$or nonparabolic potentials, but fails to reproduce the exact
Izhorskaya St., 127412 Moscow, Russia. Kramers result for a parabolic barrier. Yet another disadvan-
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tage of the above-mentioned formulas is that these are all One of the key assumptions of the PGH theory is that the
valid for the particular case of Ohmidarkovian dissipa- potential can be divided into parabolic barrier part
tion and only in the spatial diffusion regime.

The aim of this paper is to present a rate expression for a U(X)=—30, (2.7
barrier of arbitrary shape, which is valid for any dissipation ) , ) . i
and approaches the correct limiting behavior for both wealVith @“=—V"(0), and aranharmonic correctiol(; defined
and strong friction. The problem is outlined in Sec. Il, to- by
gether with the PGH rate expression. Two approaches for its
generalization are discussed in Sec. lll. In Sec. IV the theo-
retical predictions are compared with exact numerical rat
constants in different types of cusped and smooth potential
Section V ends the paper with final remarks.

V(X)=U(X)+V(X). (2.8

§ one ignores the nonlinearity, , the associated GLE for a
?farabolic barrier becomes identical to separable motion for a
rotated set of oscillatorfb,7]. One of these barrier-top nor-
mal modes is unstable and termedits imaginary frequency

Il. PGH TURNOVER THEORY \ is determined by the Laplace transform of the time-

As a preliminary we outline the problem and briefly re- dependent friction through the Kramers-Grote-Hynes rela-

view the central result of the PGH turnover theory. Thistion [6]
theory deals with the generalized Langevin equatiGhE) . )
for a particle with mass weighted coordinatenoving on a A EAY(N) =% 2.9
potential V(x) under the influence of a time dependent fric- , e .
tion y(t). In the simplest one-dimensional case, the GLET.he frequgr)cy\ defines the s_pat|al @ffusmn limit transmis-
sion coefficient for a parabolic barrier
reads[5]
) . . uB=\ . (2.10
x:—V’(x)—f dsy(t—s)x(s)+f(t), (2. _ . _
0 For a metastable well, the nonlinearity mixes the unstable
_ ) normal mode with the remaining degrees of freedom. This
where the Gaussian zero mean random fdi@g is related  coupling causes an exchange of energy between the unstable
to the friction kernel through the second fluctuation dissipangrmal mode and the bath. The latter process plays a deci-
tion theorem sive role in the energy diffusiofweak friction regime. In
_ this way PGH showed that the escape dynamics is governed
— 1 _
(f(Of(8))=B""»(t=s). (2.2 by the unstable normal mode coordingterather than the
ﬁ)article coordinat. Then, applying to the dynamics ¢f
the approach of Mel'nikov and Meshkd4], PGH rederived
atlhe main result of the MM turnover theory reading

1= p5EA(A). (2.19)

In the above, the dot and prime denote the derivatives wit
respect to time and position, respectively, ghds the in-
verse energy available from the thermal bath. The potenti
is assumed to have a well with minimumxg{<0, separated
from the continuum by a barrier at=0 of height E
=—V(x,). Hereby we set for conveniencé(0)=0. Fi-

In the last expressioA(A) is the MM depopulation factor
nally, the static friction coefficieny is defined by P loA(A) 1 populat

w 1= Infl—exd—A(x?+3)]}
Y= jo dty(t). (2.3 A(4) exp( Wfo dx X2+ ,
(2.12
The quantity of interest is the escape rhtef the particle
from the well. It can always be written in the form which provides the changeover from the energy diffusion
limit to the TST resultA(A>1)=1; while Mgg assures that

I'=ulrst, (2.4 the theory reduces to the correct spatial diffusion limit. The

) parameterA determining the depopulation factor is the di-
wherel'rsris the TST result mensionless energy loss of the particle as it traverses the

reactant regiorj4]. According to PGH the energy loss has

0 -1
FTST:{‘/Z"T,BJ dxe‘ﬁV(X)} ' (2.5  theform

T T
and u is a transmission coefficient describing the deviation APGH=%ﬂf_Tdtf_TdsK(t—s)F(t)F(s), (2.13
of the rate froml'rg7. In this paper we restrict our consid-

eratic_)n to lthe limit of high barrierdow temperatures BE  \yhere the friction kerneK (t) is defined by its Laplace trans-
>1, in which case the TST rate becomes form

Irs{ BE>1)=(w,/2m)e FE, (2.6) ,

_ 5 R(z):f dte *K(t)= —; = - ,
where w,, is the frequency at the bottom of the wedb;, 0 usd 22+ zy(2)—w?]  (22—\?)
=V"(x,). (2.14
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while the time dependent forde(t) dynamics can be described by a probabilistic integral equa-
, tion in energy-action variables, whose Green function corre-
F(t)= —UooV1(Ugop) (219  sponds to the barriefasymptoti¢ trajectory. For a smooth

is determined from the zero-order equation of motion for thepotential the trajectory that Ieave_s the ba_lrrier with the entire
energy close to zero returns to it after tiffie- [see Eq.
unstable mode: (3.5)]. This infinite time, however, is no longer true for a
5 \2p=F(1) 2.16 cusped barrier where the time is of the order of the period of
p=Ap : : particle oscillation in the well. Thus the interesting issue we
The asymptotic trajectory(t) starts at the barrier in the Shall address in our numerical applications is as follows:
infinite past with energy close to zero, traverses the meta20€S the finite period of the barrier trajectory spoil the ap-

stable well once, and returns to the barrier top at timePlicability of Eq. (3.1). , .
T— . The factoruy, involved in Eq.(2.14 is given by With the ansatz3.1) the construction of a unified rate
0 expression reduces to two separate problems, namely, the

1 2 (o »I(v) derivation of the spatial diffusion limit transmission coeffi-
— =1+ —f dllﬁ, (2.17 cient usq and the determination of the energy lassof the
Uoo mlo (v particle per oscillation. The former is derived in Sec. Ill B by

approximately solving the respective Fokker-Planck equa-

tion. While the latter is determined in Sec. Ill C in terms of
o the deterministic particle dynamics. However, before pre-

J(v)= vf dty(t)cog vt). (2.18 senting these results we outline in Sec. Il A a heuristic ap-
0 proach to the above-posed problems.

whereJ(v) is the spectral density defined as

It is seen that both factors of E¢R.11) are strongly de- _

pendent on the parabolic approximation for the barrier. This A. Naive approach

makes the PGH rate expression inapplicable to various dif- The approach consists in using two naive approximations,

ferent nonparabolic potentials that have been introduced igne for ueg and another forA. The spatial diffusion limit

the literature to allow a more flexible description of activatediransmission coefficient.y can be evaluated by approximat-

rate processes. In an effort to construct a theory for an arbing the actual potential barrig#(x) with a parabolic barrier

trarily shaped potential, Pollak and co-workdfst,15,17 1 54,2x2 and using the standard Kramers-Grote-Hynes trans-

have recently proposed to use the above parabolic barrighission coefficient, Eq(2.10. The effective frequency is

solution and treat the barrier frequency as a variational pag free parameter in this case. It is easily determined from the

rameter. In the case of Ohmic friction requirement that the integrals over allof the exponents
()= 298(1), (2.19 exf BU(X)] and exp(- 1Bw?x?) are equal to each other, which

gives

the authors have managed to derive in this way a spatial 5 _1

diffusion limit analog of the Kramers transmission coeffi- 0=\ 127

cientu$g*Pfor a cusped barrigri4,15. However, they failed B

to provide an analogous extension of the theory to the energz ] ] ) o

diffusion regime. Thus, a satisfactory solution of the non-For a bistable potential with minima at., Eq.(3.2) can be

Markovian turnover problem for arbitrarily shaped barriers isfewritten as

effectivelystill lacking.
2
w=\/—
I1l. INTERPOLATING FORMULA B

The basic idea underlying our approach is the same as ifhe heuristic approximation outlined above is identical to
the turnover theory of Mel'nikov and Meshkdg¥]. Follow-  that of Calef and WolynefL2].

ing these authors we assume that the overall transmission p naive approach to the energy lodsis based on the

coefficient for an arbitrarily shaped barrier can be written agemark that when friction is weak, the escape process is al-
the product of the MM depopulation factor apdg [cf. EQ.  most identical to the underdamped deterministic motion.
(2.11] Consequently, the energy loss can be estimated from the dy-
= 1 AA) 3.1) namics ofx rather than the much more complicated dynam-
K= Hs ' ' ics of p [4,7]. This results in a weak damping approximation

It may be noted that the ansatz of writing a uniform formula©f the form

for the turnover as a product of a spatial diffusion expression T .

and the MM_d_epopuIatlon_ factor has be_en_L_Jsed for space A(7—>0):,3J dtJ dsxt)y(t—s)x(s), (3.4
dependent frictiord8]. Its utility has been justified by com- -1 J-7

paring with exact numerical rates. It is our aim here to show

that the same ansatz is also applicable to potentials with nonwhere the asymptotitarrien trajectoryx(t) is determined
parabolic barriers. The latter is not so obvious as one migHirom the underdamped deterministic equation of motion
think. Specifically, the MM derivation of the depopulation )

factor, Eq.(2.12), is based on the assumption that the escape x=—-V'(X), (3.5

f dxefV™ (3.2

-1

X+
[

X_

(3.3
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with x(—T)=x(—T)=0. It is a matter of some algebra to The random forces,, ... F, appearing in Eq(3.9 are
show that the explicit expression for the energy loss definetincorrelated zero mean Gaussian white noises

by Egs.(3.4) and (3.5 reads (Fi(DF(0))=28" 18, yim &(t), (3.10
0 0
a=g[ dx] ayilto0-t -0+t i
Xp Xp

1) = f "yl - 2viy)] 2 3.6 m=I1 . (312
Xp

where x, is the turning point of the barrier trajectory, The Fokker-Planck equation related to E(s9) and(3.10
V(xp)=0. For Ohmic friction, the above approximation re- is
duces to the MM energy log¢]

. dP(x,v,y,t)=LP(x,v,y,t), (3.12
AMM=27,8Lpdx\/—2V(x), (3.7 where
being thus its straightforward generalization to the case of
time-dependent friction. The advantages of B6) are that L=-v—>+7 _[V (X)—yi1l
it allows for an arbitrary potential and is much more simple
to implement than the PGH expression, E¢s13—-(2.16. d 4 d
The disadvantage of this approximation is that it is robust T oy, Mot YY1~ Yot B NG
only for those rate processes that do not lead to an energy
diffusion controlled regime in the strong damping limit. Oth- d d
erwise it may fail grossly. We will refer to Eq$3.2) and (;y 1Y1t Y2~ Yat B vama g 3y, T
(3.6) as thenaive approach.
1% J
B. Generalized transmission coefficient for the spatial &y ( -1t YYm+ B Y 7~ Ym 313

diffusion regime

denotes the Fokker-Planck operator. Since the noise in the

GLE (2.1) obeys the fluctuation dissipation theorem, Eq.
2.2, the above Fokker-Planck equation possesses a
oltzmann-like equilibrium distribution,

Now we outline alternatives to the naive approximations
for usgandA. To begin with we consider the spatial diffu-
sion regime. Our purpose is to derive an approximate tran
mission coefficienjugy that would allow one to recover dif-
ferent rate expressions that are already obtained in the _
literature for parabolic, cusped, and quartic barriers. A PedX.,v.y) =exf = Bo(x.v.y)],
straightforward way of dealing with a non-Markovian pro- N 12 N _12
cess is to add a sufficient number of supplementary variables®(X:v.Y) =V(X)+ 30 24 3(m) i+ 5 () Y
such that the resulting process is Markovian in the enlarged 314
phase spacil8,19. To this end, we assume that the Laplace

transform y(z) has a continued fraction expansion, which
can be approximated by its firet terms, as

The latter reduces, after integration over the additional vari-
ablesy; , to the standard Maxwell-Boltzmann form. In accor-
dance with the problem under consideration, the generalized
potential ¢(X,v,y) has a saddle point at the origin and a
~ m 72 Tm e
v(2)= FEprRe (3.8 metastable minimum atx(,0, . . .,0).
ZrnT 2Ty Vm The objective is to find the transmission coefficient, the

Here the parameters satisfy>0,y;=0. Then, introducing probability that a particle injected into a well will stick. A

m auxiliary variablesy=(yy, . . . y), the one-dimensional simple way for achieving this goal is to employ th_e _flu>_< over
non-Markovian process(2.1) is approximated by a POPulation method developed by Krame. Within its
(m+ 2)-dimensional Markov process readiftg] scope, the escape rate is defined as the ratio of a stationary
diffusion current at the top of the barrier to the population of
X=v, the well. Accordingly, we have to look for a current carrying
stationary probability densityP(x,v,y), which smoothly
v=—V'(X)+V;, matches the equilibrium distributioR(x,v,y) in the well
and vanishes beyond the barrier. The two stationary densities
V1= — 710 — YY1+ Yo+ F1(1), are related by a form functio&(x,v,y),
y2=—n2y1—72y2+y3+ Fo(D), P(x,v,Y)=£(x.v,Y)Ped X,0.Y). (3.19

Since bothP(x,v,y) andPe{x,v,y) are stationary solutions
. of the Fokker-Planck equation, the form function is deter-
Ym= = TmYm-1— YmYm+ Fm(t). (3.9 mined from
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J d d 2 d 32
I ’ _ _ _ _ _ -1 _ _ - -
‘ v &X"‘[V (x) yl]&v + (710 = y1Y1 y2)07y1+'8 Y171 &y%+(772)’1 V2Y2— ys) s + B typm Z&yz +
&2
+(mYm-1— 'ymym)a_ B YmTm— 5 (9y &(X,v,y)=0. (3.1
m

Once the form function is known, the reactive flux formula yields for the transmission coefficient

m —-1/2

65(0 v y)
= (2w/5)m£[1 T f dvf dy;- - f dYmPed 00,y)———— (3.17)
|

The chain of approximations that will be made for solving 0 —-w?2 0 0 0
Eqg. (3.16 is analogous to that of the standard saddle point 1 0 0 0 0
approximation{ 3,20]. First, we assume that the height of the N
potential barrielE is sufficiently large compared to the en- 0 -1 —-v1 n 0 0
ergy of thermal motionBE> 1, so that the immediate region 0 0 -1 -y 0 0
close to the barrier top dominates the dynamics. In such a
case, the potential(x) entering Eq.(3.16) can be approxi- ' ’ ' ’ ) ’ ;
mated by its barrier patt)/(x). The latter is nohecessarily . .
parabolic, it may be a sum of arbitrafparabolic and non-
parabolig terms,

7m
UX___ 2X__Xa 3.1 0 0 0 0 .o —1 ~Ym
()=~ 32~ | (3.18 324
Next we assume thai(x,v,y) is a function of some linear corresponding to a single positive eigenvalueThe eigen-
combination of the variables values of this matrix admit a continued fraction expansion
[19]
E(X,v,y)=§(r), r=RX+R,v+Riyi+ - +Rpyn.
(3.19 2
= 2 71 72 Tm ’ (3.25

Then, it is not difficult to check by direct substitution that in M AFyit Myt Ay

leading order inr and (3E) ! the respective approximate

solution to Eq.(3.16 reads from which it immediately follows thain is the positive

solution of the implicit Kramers-Grote-Hynes relation, Eg.
(2.9). As to the associated eigenvector, its first components

§(x,v,y):Zf dqefV@, (3.20  have the form
vr
= — 2 —(1—-X\2/,,2
where R=1, R, Mo, Ri=(1-\w)lmq,
. (Rz—w _w29) 2 (3.21) Ro=[(N+ y7)(1—\% w?) — N w?]l 5, (3.26
with while the rest ofR;(i>2) are determined by the recurrence
relation
m
9= mR?, (3.22 Riv1=[(A+¥)R+Ri—1l/7i41. (3.27
=1

Inserting Eg.(3.20 into Eg. (3.17), one obtains in a
and whereZ is a normalization constant defined by the re-straightforward wayfor more details, see the Appendlihe
quirement that the form functio&(x,v,y) approaches unity following expression for the transmission coefficient:
in the initial well and zero in the product side

ps=Z(1+ ﬁw“/)\?)—lfzf dx

z*1=J dxefV™, (3.23 -
o o
1
The rest of the parameters involved in E@3.19, xexp BU(X)— 3 BwX® )\2+1‘}w4_1 :
(Ry,R,,R1, ... Ry, constitute an eigenvector of the ma-

trix (3.28
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The last equation agrees in the strong damping limit with théhas been obtained in terms of the underdamped particle dy-
transmission coefficient following from the correspondingnamics, Eq(3.5), and therefore may fail considerably in the
Smoluchowski equatiof21] limit of intermediate and strong damping. The validity of the
3 1 last statement becomes apparent from the following ex-
* ample. Let us consider for a moment the motion of a particle
Hsd 7_)00):[ YN ﬂf_wdxegum} 329 iy 3 metastable well with an exponentially decaying friction
kernel of the form
and reduces to unity at zero damping. It may also be noted a
that for a parabolic barrier, E43.28 reproduces the exact y()=(y/m)e ", (3.33
Kramers-Grote-Hynes result, ER.10, while for a purely

nonparabolic barrierg=0) it gives where the correlation time of the noise is assumed to be

independent of the static frictiop. With Eq. (3.33 it is not
P Y difficult to see that whery— oo the naive approximation for
Msd 0=0)=Z(1+ dv°) fﬁxdx the energy loss also goes to infinity, regardless of the barrier
height. By definition, however, the energy loss cannot be

By2x2 larger than the barrier height.
Xexpg BU(X)— | (3.30 An obvious way to correct the naive approximation is to
2(1+9y%) take into account the dissipative and fluctuating terms fully

neglected in Eq(3.5. This can be achieved by introducing

The non-Markovian dynamics of the system only enters eqhe mechanical energy

(3.30 through the factord. The latter is defined by Eq.
(3.22, where the component®; of the eigenvector take for

=0 the form e=3x2+V(x) (3.34)

Ry=1/m,, Ry=(y1+1ly)lm,, and averaging the difference

(3.31)
Ri+1(i=2)=(yRi+R-1)/ 7 1. e(0)—g(t)= J;duj:dsxu)y(u—sms)— fotdu'x(u)f(u)

In the case of Ohmic dissipation, E(.30 reproduces the (3.35
result of Berezhkovskiet al. [16]
over trajectorie(t) that start at the top of the barrier with
ohmic, . _ v~ |~ 12,2 x(0)=5<(0)=0 and traverse the metastable region once. It is
=0)=Z -3 . ) :
Heg"(@=0) f_wdxexp{ﬁ[U(x) 2y X1 clear that the stochastic energy loss so determined will be
(3.32  valid in the whole friction range, though realization of the
o ) o ] . above strategy is far from straightforward.
which is a straightforward generalization of various different  |nstead, we suggest an effective way to reach the same
transmission coefficients available in the literature for non-goa| without extraordinary Computationa| effort. The key
parabolic barriers. . _ idea of our approach is the observation that for large poten-
To conclude this section we note that for a bistable systengg| barriers, BE>1, the stochastic dynamics governed by
with a high potential barrier and minima &t the barrier  ggs, (2.1) and(2.2) can be well approximated by the deter-
partU(x) can be replaced by the bare potentigk) itself.  ministic equation of motion. The latter becomes more evi-

Then, the integration in the above equations has to be pegtent, if one rescales the variables of the GLE by the barrier
formed with the lower and upper limits at. andX, , re-  height as

spectively. The same can also be done for a metastable po-

tential, in which case the integration has to be restricted to t—tyBE, xﬁx\/ﬁ, y(t)— y(t)/( BE),
the barrier region with a lower limit at, say,, and the upper
limit at a value beyond the barrier from where the recrossing V(x)— V(x)/(BE).

probability of a particle with zero initial velocity can safely

be neglected. Moreover, the present rate formula,(8@8,  This rescaling renders the deterministic contribution inde-
can be improved if one employs instead of the flux overpendent of the barrier height and the noise term proportional
population expression, Eq(3.17, a Rayleigh quotient to the inverse square root of the barrier height,

[20,22 with the same approximate form function as test

function. The barrier frequencw entering Egs.(3.20— . , t . B

(3.27 may then be left and treated as a variational parameter X~ ~ V' (X)— Jl)ds;z(t—s)x(s)ﬂﬂE) (D),

even if the barrier is purely nonparabolit7]. Finally, the (3.39
approximate form function itself can systematically be im- (F(HF(0))=p(1).

proved by means of a perturbation theory using BR0 as

an unperturbed solutiof22]. Hence one may split the equations of motion into a leading

contribution, describing the deterministic dynamics
C. Energy loss

Next we outline an alternative to the naive approximation X=—V'(x)— ftds«y(t—s)k(s) (3.37)
for the energy loss, Eq3.6). Recall that this approximation 0 '
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improvement of the method can be obtained by taking into
account the noise terrf(t). A simple way of doing so is to
employ the systematic expansion around the deterministic
path proposed by van Kampé®5]. The approach based on
Egs. (3.28 and (3.37—(3.39 will be referred to as thele-
terministic approximation.

dx/dt

IV. APPLICATIONS

The aim of this section is twofold. First, we want to
present exact numerical rate constants in potentials of differ-
1 ent shapes that would allow one to test various analytical
predictions. One might, at first, believe that this matter
should have been settled long ago, mainly because of its
continuous importance in many problems of chemical phys-
ics. To the best of our knowledge, however, there are no
numerical solutions of such a type, other than those obtained
in Refs.[15] and[16] under the assumption that the potential
consists only of a barrier part. This assumption results in a
monotonicdependence of the transmission coefficient on the
0 7 static friction y; the coefficient increases with decreasipg

Y and reaches its maximal value at zero damping, when there is
no coupling between the system and the bath. It is clear that
and 13 and energy loss, E43.39, for a Markov rate process in a the .data SO Obtaineq are not suited for te;ting analyt_ical pre-
symmetric double well potential, Eq4.1) with a=2, b=4, and dictions for Fhe rate in the most probler_natlc intermediate and
BE=10. weak dampmg regions. Secon_d, we wish to test the accuracy
of the various approaches discussed above by comparing
them with exact numerical rates.

ABE

FIG. 1. Asymptotic deterministic trajectorig$or y=0.05, 2,

and the fluctuating correction3€) ~?f(t) and construct a
perturbation expansion in powers of the inverse barrier
height 1/(BE). A. Exact numerical results

For high potential barrierg3E> 1, a good approximation To achieve the above goals, we consider four specific
for the energy loss is already attained in zero order in thgyamples. The examples include a non-Markovian model

perturbation. In this case, the energy loss is determined froyiih a piecewise harmonic potential and Markovian acti-

the unperturbed equation of motion, E(B.37), for the  \ated rate processes in a symmetric double well of the form
asymptotic trajectory that starts at the barrier with energy

close to zero and periol—«. Since no explicit solutions of x \P x 2]
Eq. (3.37 are known, it must be solved numerically with V(X):ﬁ al s 7O | 0<a<b, 4.9
initial conditions W e
) whose barrier part
x(0)=0, x3(0)<1. (3.38
bE | x |2
The numerical solution of Eq3.37) does not present a more UX)=-t—3 Xu (4.2

difficult problem than that of the zero-order equation of mo-

tion for the unstable modge, Eq.(2.16. High efficiency is  varies with the parametea from cusped (6a<1) to
achieved by making use of a fourth-order symplectic integrasmooth (<a<2), parabolic 6=2), and higher orderg
tor developed in a previous papg23]. The energy loss is > 2) parriers, see Fig. 2. In the former case we shall compare
determined as with the numerical simulation data of Straub, Borkovec, and
Berne(SBB) [26]. While for the Markov processes compari-
A=—=BV(xp), (3.39 son will be made with numerical rate constants obtained by
) the present author. It may be noted that the problem of evalu-
where x, is the point at whichx(t) crosses zero for the ation of the escape rate in a double well is equivalent to
second time. Typical asymptotic trajectories and energyinding the least nonvanishing eigenvalue of the Fokker-
losses are shown in Fig. 1 for a Markov double well processPlanck equation. For a symmetric potential, this eigenvalue
The utility of the present approach was already tested fors given by twice the rate, Eq2.4), where the transmission
Brownian motion in different types of parabolic barrier po- coefficient can be written gl
tentials [23,24. We found that its implementation is as
simple as that of the naive approximation, E86), and still w=pusA%(A)A(2A). 4.3
results in an accurate estimate for the energy loss valid in the
full friction range. In Sec. IV we shall show that our method = The method used to numerically solve the Fokker-Planck
works quite accurately for cusped and quartic potentials asquation is described in a previous pafigr]. The calcula-
well. It may also be noted that for low barriers, a furthertions were performed in the potenti@.1) with BE=10 and
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together with the potential shapes. These results provide the
necessary foundation for testing various rate expressions in
all regimes of physical interest, from the extremely under-
P ! damped Brownian motion to the strong frictidi®molu-

s L [ chowsk) limit. As evidenced by the figure, the transmission

/ ' coefficient for the cusped potential is larger than those for the
two other potentials. Moreover, in contrast to the latter it has
a well pronounced plateawé= 1) in the intermediate damp-
ing region. This is explained by the fact that with decreasing
damping the spatial diffusion transmission coefficigny in

the cusped potential reduces to unity faster than in the
smooth potentials.

B. Comparison of the theoretical approaches
with numerical results

logsom

It should be pointed out here that the three approaches to
the turnover problem, outlined in Secs. Il and Ill, differ from
each other even though the barrier is parabolic. The differ-
ence arises due to the different approximations for the energy
loss. Therefore it would be instructive to begin our compari-
son with the parabolic barrier model used by PGH for

FIG. 2. Different shapes of the potentid(x), Eq. (4.1), and  testing their turnover theory. The dynamics of the model is
numerically exact transmission coefficients for a cusped ( that of a particle moving in the piecewise continuous har-
=1, b=4, dashed ling parabolic 6=2, b=4, solid line, and monic potential
quartic @=4, b=6, dot-dashed linebarrier. The numerical data

0 1
logygY

are also presented by lines for an eye guide convenience only. —E+ %w&v(er xw)z, X< —Xx*
U(x)= (4.9
Xw=1 for a parabolic §=2, b=4), cusped é=1, b=4), — 122, X=—X*
and quartic 8=4, b=6) barrier. The exact numerical esti-
mates of the least nonvanishing eigenvalue for a large intefyith
val of y are presented in Table | and exhibited in Fig. 2,
Xo= (14 0% 02)x*, E=3w?X*x,, (4.5

TABLE I. First nonzero eigenvalue in a symmetric double well
potential, Eq(4.1), with BE=10 andx,,= 1, for different values of and experiencing an exponential friction kernel of the form
v and for different barrier shapes. Exponential notafikh means

that the number preceding is to be multiplied by 10 y(t)=a lexp(—t/ay). (4.6

¥ a=1,b=4 a=2,b=4 a=4,b=6 The above model was studied numerically by SBB], who
cusped parabolic quartic computed the escape rate for a large range of parameters.

The numerical results for the transmission coefficient ob-

0.01 0.36%5] 0.3995] 0.4845] tained from the SBB simulation data are presented in Fig. 3

0.05 0.1444] 0.1714] 0.1994] together with the predictions of the three theoretical ap-

0.1 0.2474] 0.3044] 0.35Q4] proaches discussed above. Also shown are the respective ap-

0.25 0.45¢4] 0.5934] 0.7084] proximations for the energy loss. As anticipated, the three

0.5 0.6404] 0.8684] 0.1073] approaches coincide with each other in the weak damping

0.75 0.73%4] 0.1003] 0.1283] region (y<0.1). In the intermediate damping region (0.1

1 0.7914] 0.1063] 0.13§3] < y<10) the difference between the various approximations

1.5 0.8404] 0.1093] 0.1433] for the energy loss becomes noticeable, though this does not

2 0.8564] 0.1063] 0.13§3] reflect on the transmission coefficient. The reason is that the

3 0.8624] 0.9974] 0.1273] energy loss is sufficiently large in this regiod £ BE>1)

4 0.8584] 0.9254] 0.1073] to reduce the depopulation facté(A) to unity. Finally, in

6 0.83%4] 0.7974] 0.8534] the strong damping regiony(10) the deterministic ap-

8 0.8064] 0.69724] 0.7004] proach and the PGH theory are characterized by a similar

10 0.7704] 0.6074] 0.5904] accuracy, while the naive approach overestimate the rate by

20 0.5644] 0.3614] 0.3234] one order of magnitude.

30 0.4394] 0.2514] 0.2244] The same, hoyvevgr,.ls not true for a rate process, whose

100 0.14%4] 0.7845] 0.6745] bath correlatlor_l time is independent of In such a case, the

1000 0.1475] 2 0.7836]2 0.6756]2 escape dynamics does not lead to an energy diffusion con-

trolled regime asy goes to infinity. Instead, it is character-
8Exact estimate of the eigenvalue calculated from the respectivized by large energy loss at large damping such A&t)
Smoluchowski equation. ~1; accordingly, the naive approach provides an accurate
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FIG. 3. Energy loss and transmission coefficient for the SBB
model, Egs.(4.4—(4.6) with BE=20, w/w,=2, and w’a=4/3.
Dot-dashed lines: PGH theory; dashed lines: naive approximation;
solid lines: deterministic approach; circles: exact numerical results.

% error

description of the rate in the strong damping limit as well.
The latter is seen from Fig. 4, which shows the energy loss
and the transmission coefficient in a parabolic barrier poten-
tial with Ohmic friction. As evidenced by the figure, the 2
naive approach remains correct in the whole damping range.

On the other hand, this approximation is least favorable, it FIG. 4. Energy loss, transmission coefficient, and percentage
systematically overestimates the rate. The deterministic aprror[100X (approximate — exact)/exdctmade inu for a Mar-
proach is in better agreement with numerical calculationdkov parabolic double well, Eq(4.1) with a=2, b=4, and gE
than the two other approaches for all valuesyoéxcepting =1Q. Dot-o_las.hed lines: PGH _theory; dashe_d lines: naive appr_oxi-
y~1. Fory~1 the best agreement is achieved with the pGHMation; solid lines: deterministic approach; circles: exact numerical
theory. It may also be pointed out that in the weak dampindesu“&

limit (y<<1) all the approaches are relatively inaccurate andt_ q d | h i | the barrier traiect
overestimate the rate by 18%. ion depends only on the action along the barrier trajectory,

Next we apply the naive and the deterministic approache‘éVh'Ch is always finite regardless of whether or not the cor-

to a cusp shaped barrier, E¢..1) with a=1 andb=4. The responding period is infinite.

L - Finally, we consider the rate of escape over a quartic bar-
exact values of the transmission coefficient for the cusped., Eq.(4.1) with a=4 andb=6. The naive and the deter-

double well potential are presented in Fig. 5, together withy,nigtic predictions for the symmetric quartic double well
the theoretical predictions. The figure shows that the tWq)stential are compared in Fig. 6 with the numerical rates. It
approximations are characterized by a similar accuracy. Th seen that in this case both approximations give an upper
deterministic approach is better in the low damping regionpound to the exact result for the rate. The deviation of the
while the naive approach gives better results in the intermegeterministic approach from the numerical results varies
diate damping regime. In the strong damping limit both derom ~2% in the strong damping limit, reaches a maximum
viate from the exact result by roughly the same amount, thef ~30% at y~3 and decreases te-14% in the weak
deterministic approach underestimates the rate, while the naamping region. The error made by the naive approximation
ive approximation overestimates it. It is remarkable that thds larger than that of the deterministic approach everywhere
errors obtained for the cusped barrier are comparable texcept for the intermediate damping region<(%<10).

those for the parabolic barriécf. Figs. 4 and b The latter
allows us to conclude that the ansé&®1) works quite well
even though the tim& taken by the deterministic particle to
go from the barrier and back to it is finite. This result is not In this paper, we presented accurate calculations of ther-
surprising because periods of particle oscillation do not entemally activated rates in a symmetric double well potential
the integral equation in energy variables used by MM in theimwith parabolic, cusped, and quartic barriers. The results were
derivation of the depopulation factor, E@.12. The equa- used to analyze the relative validity of two approaches to the

0 1
logyqY

V. CONCLUDING REMARKS
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FIG. 5. Same as in Fig. 4 but for a cusped barrier, Bdl) with FIG. 6. Same as in Fig. 4 but for a quartic barrier, Egl) with
a=1,b=4. a=4, b=6.

calculation of the escape rate in arbitrarily shaped potentialsphmic dissipation and may not be a generic case for non-
The basic idea underlying the approaches is the assumptiqiarkovian processes. If the noise correlation time is longer
that the MM ansaiz for the transmission coefficient, Eq.than the period of the barrier trajectory, then the Mel'nikov

(3.), is correct without regard to the barrier shape. An ap-yerivation is not necessarily correct. Therefore, care must be

proxima}te rate expression was then constructed by us.ir.‘g.t%ken when applying the MM ansatz to non-Markovian acti-
generalized energy loss of the underdamped determlnlstl\9

dynamics, Eq(3.6), and the standard Kramers-Grote-Hynes ated rate processes in a cusp shaped potential.

transmission coefficient with an effective barrier frequenc For parabolic barriers our comparison also included re-
d Ysults from the PGH turnover theory. We found that in the

w given by Eq.(3.2). This naive approximation is generally .~ .
robust for Markov activated rate processes and may fail conl-Irnlts of weak and strong damping the PGH theory and the

siderably for non-Markovian systems, which exhibit an en_deterministiq approagh are cha}racteri'zed by a similar aceu-
ergy diffusion controlled regime in the strong damping limit, a¢y- In the intermediate damping region the PGH theory is
An alternative approach free of this drawback consists if? Petter agreement than the two present approaches. The
using a properly defined energy loss of the deterministic dy@ve approximation gives the worst approximation to the
namics and a generalized Kramers-Grote-Hynes transmissidix@ct results in both limits of weak and strong damping and
coefficient obtained by means of the flux over populationw_orks bette_r than thg deterministic approach in the interme-
method. The resulting rate expression approaches the corrédigte damping domain.

limiting behavior for both weak and strong friction. It gen-

eralizes in a natural way various different rate formulas that

are available in the literature for parabolic and nonparabolic ACKNOWLEDGMENTS
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APPENDIX A Smoluchowski equation, E43.28, and in the limit of weak
In this appendix we outline the central result of Sec. Il B friction with the TST resulty.rsr=1. To simplify the proof,

as given in Eq(3.28. Inserting Eq.(3.20 into Eq. (3.17  We rescale the memory fU”CtLW(t):Q’;(t) and assume
and integrating over the Gaussié@nvironmental variables  that the expansion coefficients; and y; of the rescaled

yi yields for the transmission coefficient Laplace transformy(z) remain finite whatever the static fric-
Bohe tion coefficienty is. Under this assumption, one finds that
o0 w X B
Msdzz(de‘M)_yzf dxexg BU(X)— fqr y—oo the eigenvaluex and the component®; of the
—w 22)\2 eigenvector go to zero as
w4§ . \/_ 7\:@2/’)’, Ri:Ci/‘y, ﬁZC/‘y,
X 1-—— M'RRi V7 | |, Al
NGNES! N (A1) wherec; andc are regular functions of. Thus Eq.(3.28
reduces to
where the matrixV;; reads
M= 8+ (0 N)RR ;. A2)  Msd 7—>°°)=Z(07)’1’2f7wdxexr{BU(><)—%B(ylc)xz]-

By explicitly evaluating the determinant of this matrix and (A5)
its inverseM'!, it is possible to prove thd20] The integral in the last equation is dominated by its Gaussian
contribution and can be evaluated analytically to yield Eq.

detM =1+ (w*/\?) 9 (A3) (3.29, as we set out to prove. On the other hand, for vanish-

and ingly weak friction (y—0) one has
A=w, R=c;, UT=cvy.
ij_ (1)4RiRj\7Ti7Tj @ I I 4
MU =g — T r oty (A4)  consequently,

whered is defined by Eq(3.22. With these findings it is a tsd y—>0)=Z(1+Cyw2)*1’2f dx
simple matter to go from EqA1l) to the final result, Eq. -
(3.28. X exf BU(x)— 3 Beyw?x?], (AB)

Before closing the Appendix we would like to show that
Eq. (3.28 agrees in the limiting case of high friction with the from which it immediately follows the desired result vy
transmission coefficient obtained from the corresponding=0)=1.
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