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Theory of non-Markovian activated rate processes for an arbitrarily shaped potential barrier

Alexander N. Drozdov*
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

~Received 13 April 1998!

The Mel’nikov-Meshkov~MM ! turnover theory@J. Chem. Phys.85, 1018~1986!# for the escape rate of a
particle from a metastable state is extended to a non-Markovian activated rate process in a potential with an
arbitrary barrier shape. The key points of the extension are a generalized expression for the Kramers-Grote-
Hynes transmission coefficient and a properly defined energy loss of the particle per oscillation. The former is
derived by approximately solving the respective Fokker-Planck equation, while the latter is obtained from the
deterministic particle dynamics. The resulting overall rate expression interpolates the correct limiting behavior
for both weak and strong friction. Its validity is tested by comparing with exact numerical rates in potentials
with parabolic, cusped, and quartic barriers. In all these cases we obtain excellent agreement between the
theory and estimates of the rates from numerical calculations.@S1063-651X~98!04509-7#

PACS number~s!: 05.40.1j, 82.20.Db, 82.20.Fd
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I. INTRODUCTION

The thermally activated escape of a system from a m
stable state by crossing a barrier represents a decisive st
the dynamics of various realistic processes. Ever since
pioneering contribution of Arrhenius, the evaluation of t
escape rate has become one of the most fundamental p
lems in physics and chemistry~for reviews of the field, see
Refs.@1# and @2#!. The modern theory of activated rate pr
cesses is essentially due to Kramers@3#, who realized the
role of the interaction of the system with a surrounding h
bath and fully took it into account for a simple model. Th
Kramers model consists of a single mechanical particle m
ing on a metastable potential and interacting with a heat b
The heat bath causes a velocity proportional friction fo
and a random force, the former extracting and the latter s
plying energy. The correlation time of the random force
supposed to be vanishingly small such that a Markovian p
cess results for the considered system. Kramers showed
depending on the coupling strength~friction coefficient! g,
there are two qualitatively different mechanisms determin
the escape process. In the weak friction limit the energy
the particle is an almost conserved quantity undergoin
slow diffusion process, so that the rate is determined by
exchange of energy between the particle and the bath~the
so-called energy diffusion regime!. On the other hand, fo
moderate to large friction the heat bath couples sufficien
strongly to maintain a thermal equilibrium within the we
The nonequilibrium effects associated with the escape
namics are then restricted to the immediate vicinity of
barrier top. Consequently, the passage over the barrier is
rate determining step~the spatial diffusion regime!. In the
former limit the rate increases with the friction coefficie
while in the latter case it decreases with increasingg. Kram-
ers derived explicit expressions for the escape rate in th
two regimes and noted the existence of a turnover regio

The turnover problem was actively studied in the 198
Many different formulas were suggested to bridge the t
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limiting Kramers results@1#. The particular advance in thi
area can largely be attributed to Mel’nikov and Meshk
~MM ! @4#. These authors developed a beautiful approach
the weak damping regime. The basic steps of the appro
are reducing the problem to an integral equation in ene
variables and solving this equation by the Wiener-Ho
method. An expression for the rate that holds at arbitr
damping was obtained by using anad hoc multiplicative
factor to assure the changeover from the weak damping
strong one@4#.

Since the Markovian assumption is not always met
physical applications, generalized Langevin equations p
posed by Zwanzig@5# have been introduced to cover mo
general environments that cause random forces with fi
correlation times@6#. A systematic solution of the non
Markovian turnover problem was given by Pollak, Grabe
and Hänggi ~PGH! @7#, who rederived the MM turnover for-
mula without any ad hocbridging. For achieving this, PGH
elaborated a theory that combines the normal mode te
nique, as well as the approach by Mel’nikov and Meshk
Recently, both turnover theories have found various gen
alizations to cases with state-dependent friction@8# and mul-
tidimensional systems@9#.

All the investigations mentioned above make extens
use of a parabolic approximation for the barrier,U(x)
52 1

2 v2x2, though parabolic barriers are not the gene
case in real activated rate processes. For example, the ba
of charge transfer reactions is often of a cusp-shaped f
@10#. Kramers@3# also considered the case of a symmet
cusped barrier,U(x)52auxu. However, the rate expressio
he derived in this case is valid only in the strong frictio
~Smoluchowski! limit. Various rate expressions have bee
derived that agree in the limiting case of strong friction w
the Kramers result for a cusped potential and, in the limit
weak friction with the rate obtained from the transition sta
theory~TST! @11–15#. An analogous interpolating formula i
known for a quartic barrier,U(x)52 1

4 ax4 @1#. Only very
recently, Berezhkovskiiet al. @16# have extended this for
mula to an arbitrarily shaped barrier,U(x)52(a/a)uxua.
Their generalization agrees with the known rate express
for nonparabolic potentials, but fails to reproduce the ex
Kramers result for a parabolic barrier. Yet another disadv
9
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2866 PRE 58ALEXANDER N. DROZDOV
tage of the above-mentioned formulas is that these are
valid for the particular case of Ohmic~Markovian! dissipa-
tion and only in the spatial diffusion regime.

The aim of this paper is to present a rate expression f
barrier of arbitrary shape, which is valid for any dissipati
and approaches the correct limiting behavior for both we
and strong friction. The problem is outlined in Sec. II, t
gether with the PGH rate expression. Two approaches fo
generalization are discussed in Sec. III. In Sec. IV the th
retical predictions are compared with exact numerical r
constants in different types of cusped and smooth potent
Section V ends the paper with final remarks.

II. PGH TURNOVER THEORY

As a preliminary we outline the problem and briefly r
view the central result of the PGH turnover theory. Th
theory deals with the generalized Langevin equation~GLE!
for a particle with mass weighted coordinatex moving on a
potentialV(x) under the influence of a time dependent fr
tion g(t). In the simplest one-dimensional case, the G
reads@5#

ẍ52V8~x!2E
0

t

dsg~ t2s!ẋ~s!1 f ~ t !, ~2.1!

where the Gaussian zero mean random forcef (t) is related
to the friction kernel through the second fluctuation dissi
tion theorem

^ f ~ t ! f ~s!&5b21g~ t2s!. ~2.2!

In the above, the dot and prime denote the derivatives w
respect to time and position, respectively, andb is the in-
verse energy available from the thermal bath. The poten
is assumed to have a well with minimum atxw,0, separated
from the continuum by a barrier atx50 of height E
52V(xw). Hereby we set for convenienceV(0)50. Fi-
nally, the static friction coefficientg is defined by

g5E
0

`

dtg~ t !. ~2.3!

The quantity of interest is the escape rateG of the particle
from the well. It can always be written in the form

G5mGTST, ~2.4!

whereGTST is the TST result

GTST5HA2pbE
2`

0

dxe2bV~x!J 21

, ~2.5!

and m is a transmission coefficient describing the deviat
of the rate fromGTST. In this paper we restrict our consid
eration to the limit of high barriers~low temperatures!, bE
@1, in which case the TST rate becomes

GTST~bE@1!5~vw/2p!e2bE, ~2.6!

where vw is the frequency at the bottom of the well,vw
2

5V9(xw).
all
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One of the key assumptions of the PGH theory is that
potential can be divided into aparabolic barrier part

U~x!52 1
2 v2x2, ~2.7!

with v252V9(0), and ananharmonic correctionV1 defined
by

V~x!5U~x!1V1~x!. ~2.8!

If one ignores the nonlinearityV1 , the associated GLE for a
parabolic barrier becomes identical to separable motion f
rotated set of oscillators@5,7#. One of these barrier-top nor
mal modes is unstable and termedr. Its imaginary frequency
l is determined by the Laplace transform of the tim
dependent friction through the Kramers-Grote-Hynes re
tion @6#

l21lĝ~l!5v2. ~2.9!

The frequencyl defines the spatial diffusion limit transmis
sion coefficient for a parabolic barrier

msd
pb5l/v. ~2.10!

For a metastable well, the nonlinearity mixes the unsta
normal mode with the remaining degrees of freedom. T
coupling causes an exchange of energy between the uns
normal mode and the bath. The latter process plays a d
sive role in the energy diffusion~weak friction! regime. In
this way PGH showed that the escape dynamics is gove
by the unstable normal mode coordinater rather than the
particle coordinatex. Then, applying to the dynamics ofr
the approach of Mel’nikov and Meshkov@4#, PGH rederived
the main result of the MM turnover theory reading

m5msd
pbA~D!. ~2.11!

In the last expressionA(D) is the MM depopulation factor

A~D!5expS 1

pE0

`

dx
ln$12exp@2D~x21 1

4 !#%

x21 1
4

D ,

~2.12!

which provides the changeover from the energy diffus
limit to the TST result,A(D@1)51; while msd

pb assures that
the theory reduces to the correct spatial diffusion limit. T
parameterD determining the depopulation factor is the d
mensionless energy loss of the particle as it traverses
reactant region@4#. According to PGH the energy loss ha
the form

DPGH5 1
2 bE

2T

T

dtE
2T

T

dsK~ t2s!F~ t !F~s!, ~2.13!

where the friction kernelK(t) is defined by its Laplace trans
form

K̂~z!5E
0

`

dte2ztK~ t !5
z

u00
2 @z21zĝ~z!2v2#

2
z

~z22l2!
,

~2.14!
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while the time dependent forceF(t)

F~ t !52u00V18~u00r! ~2.15!

is determined from the zero-order equation of motion for
unstable mode:

r̈2l2r5F~ t !. ~2.16!

The asymptotic trajectoryr(t) starts at the barrier in the
infinite past with energy close to zero, traverses the m
stable well once, and returns to the barrier top at ti
T→`. The factoru00 involved in Eq.~2.14! is given by

1

u00
2

511
2

pE0

`

dn
nJ~n!

~n21l2!2
, ~2.17!

whereJ(n) is the spectral density defined as

J~n!5nE
0

`

dtg~ t !cos~nt !. ~2.18!

It is seen that both factors of Eq.~2.11! are strongly de-
pendent on the parabolic approximation for the barrier. T
makes the PGH rate expression inapplicable to various
ferent nonparabolic potentials that have been introduce
the literature to allow a more flexible description of activat
rate processes. In an effort to construct a theory for an a
trarily shaped potential, Pollak and co-workers@14,15,17#
have recently proposed to use the above parabolic ba
solution and treat the barrier frequency as a variational
rameter. In the case of Ohmic friction

g~ t !52gd~ t !, ~2.19!

the authors have managed to derive in this way a spa
diffusion limit analog of the Kramers transmission coef
cientmsd

cuspfor a cusped barrier@14,15#. However, they failed
to provide an analogous extension of the theory to the ene
diffusion regime. Thus, a satisfactory solution of the no
Markovian turnover problem for arbitrarily shaped barriers
effectivelystill lacking.

III. INTERPOLATING FORMULA

The basic idea underlying our approach is the same a
the turnover theory of Mel’nikov and Meshkov@4#. Follow-
ing these authors we assume that the overall transmis
coefficient for an arbitrarily shaped barrier can be written
the product of the MM depopulation factor andmsd @cf. Eq.
~2.11!#

m5msdA~D!. ~3.1!

It may be noted that the ansatz of writing a uniform formu
for the turnover as a product of a spatial diffusion express
and the MM depopulation factor has been used for sp
dependent friction@8#. Its utility has been justified by com
paring with exact numerical rates. It is our aim here to sh
that the same ansatz is also applicable to potentials with n
parabolic barriers. The latter is not so obvious as one m
think. Specifically, the MM derivation of the depopulatio
factor, Eq.~2.12!, is based on the assumption that the esc
e
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dynamics can be described by a probabilistic integral eq
tion in energy-action variables, whose Green function cor
sponds to the barrier~asymptotic! trajectory. For a smooth
potential the trajectory that leaves the barrier with the en
energy close to zero returns to it after timeT→` @see Eq.
~3.5!#. This infinite time, however, is no longer true for
cusped barrier where the time is of the order of the period
particle oscillation in the well. Thus the interesting issue
shall address in our numerical applications is as follow
Does the finite period of the barrier trajectory spoil the a
plicability of Eq. ~3.1!.

With the ansatz~3.1! the construction of a unified rat
expression reduces to two separate problems, namely,
derivation of the spatial diffusion limit transmission coef
cient msd and the determination of the energy lossD of the
particle per oscillation. The former is derived in Sec. III B b
approximately solving the respective Fokker-Planck eq
tion. While the latter is determined in Sec. III C in terms
the deterministic particle dynamics. However, before p
senting these results we outline in Sec. III A a heuristic a
proach to the above-posed problems.

A. Naive approach

The approach consists in using two naive approximatio
one for msd and another forD. The spatial diffusion limit
transmission coefficientmsd can be evaluated by approxima
ing the actual potential barrierU(x) with a parabolic barrier
1
2 bv2x2 and using the standard Kramers-Grote-Hynes tra
mission coefficient, Eq.~2.10!. The effective frequencyv is
a free parameter in this case. It is easily determined from
requirement that the integrals over allx of the exponents
exp@bU(x)# and exp(21

2bv2x2) are equal to each other, whic
gives

v5A2p

b F E
2`

`

dxebU~x!G21

. ~3.2!

For a bistable potential with minima atx6 , Eq. ~3.2! can be
rewritten as

v5A2p

b F E
x2

x1

dxebV~x!G21

. ~3.3!

The heuristic approximation outlined above is identical
that of Calef and Wolynes@12#.

A naive approach to the energy lossD is based on the
remark that when friction is weak, the escape process is
most identical to the underdamped deterministic moti
Consequently, the energy loss can be estimated from the
namics ofx rather than the much more complicated dyna
ics of r @4,7#. This results in a weak damping approximatio
of the form

D~g→0!5bE
2T

T

dtE
2T

t

dsẋ~ t !g~ t2s!ẋ~s!, ~3.4!

where the asymptotic~barrier! trajectoryx(t) is determined
from the underdamped deterministic equation of motion

ẍ52V8~x!, ~3.5!



o
ne

,
e-

o

le

us
er
h-

n
-
n

-
th
A

o-
bl
ge
ce
ch

l

the
q.

a

ari-
r-
ized
a

he

er

nary
of
g

ities

er-

2868 PRE 58ALEXANDER N. DROZDOV
with x(2T)5 ẋ(2T)50. It is a matter of some algebra t
show that the explicit expression for the energy loss defi
by Eqs.~3.4! and ~3.5! reads

D5bE
xp

0

dxE
xp

0

dy$g@ ut~x!2t~y!u#2g@ t~x!1t~y!#%,

t~x!5E
xp

x

dy@22V~y!#21/2, ~3.6!

where xp is the turning point of the barrier trajectory
V(xp)50. For Ohmic friction, the above approximation r
duces to the MM energy loss@4#

DMM52gbE
xp

0

dxA22V~x!, ~3.7!

being thus its straightforward generalization to the case
time-dependent friction. The advantages of Eq.~3.6! are that
it allows for an arbitrary potential and is much more simp
to implement than the PGH expression, Eqs.~2.13!–~2.16!.
The disadvantage of this approximation is that it is rob
only for those rate processes that do not lead to an en
diffusion controlled regime in the strong damping limit. Ot
erwise it may fail grossly. We will refer to Eqs.~3.2! and
~3.6! as thenaiveapproach.

B. Generalized transmission coefficient for the spatial
diffusion regime

Now we outline alternatives to the naive approximatio
for msd andD. To begin with we consider the spatial diffu
sion regime. Our purpose is to derive an approximate tra
mission coefficientmsd that would allow one to recover dif
ferent rate expressions that are already obtained in
literature for parabolic, cusped, and quartic barriers.
straightforward way of dealing with a non-Markovian pr
cess is to add a sufficient number of supplementary varia
such that the resulting process is Markovian in the enlar
phase space@18,19#. To this end, we assume that the Lapla
transform ĝ(z) has a continued fraction expansion, whi
can be approximated by its firstm terms, as

ĝ~z!5
h1

z1g11

h2

z1g21
•••

hm

z1gm
. ~3.8!

Here the parameters satisfyh i.0,g i>0. Then, introducing
m auxiliary variablesy5(y1 , . . . ,ym), the one-dimensiona
non-Markovian process~2.1! is approximated by a
(m12)-dimensional Markov process reading@19#

ẋ5v,

v̇52V8~x!1y1 ,

ẏ152h1v2g1y11y21F1~ t !,

ẏ252h2y12g2y21y31F2~ t !,

•••

ẏm52hmym212gmym1Fm~ t !. ~3.9!
d

f

t
gy

s

s-

e

es
d

The random forcesF1 , . . . ,Fn appearing in Eq.~3.9! are
uncorrelated zero mean Gaussian white noises

^Fi~ t !F j~0!&52b21d i j g ip id~ t !, ~3.10!

with

p i5)
j 51

i

h j . ~3.11!

The Fokker-Planck equation related to Eqs.~3.9! and ~3.10!
is

] tP~x,v,y,t !5LP~x,v,y,t !, ~3.12!

where

L52v
]

]x
1

]

]v
@V8~x!2y1#

1
]

]y1
S h1v1g1y12y21b21g1p1

]

]y1
D

1
]

]y2
S h2y11g2y22y31b21g2p2

]

]y2
D1•••

1
]

]ym
S hmym211gmym1b21gmpm

]

]ym
D ~3.13!

denotes the Fokker-Planck operator. Since the noise in
GLE ~2.1! obeys the fluctuation dissipation theorem, E
~2.2!, the above Fokker-Planck equation possesses
Boltzmann-like equilibrium distribution,

Peq~x,v,y!5exp@2bw~x,v,y!#,

w~x,v,y!5V~x!1 1
2 v21 1

2 ~p1!21y1
21•••1 1

2 ~pm!21ym
2 .

~3.14!

The latter reduces, after integration over the additional v
ablesyi , to the standard Maxwell-Boltzmann form. In acco
dance with the problem under consideration, the general
potential w(x,v,y) has a saddle point at the origin and
metastable minimum at (xw,0, . . . ,0).

The objective is to find the transmission coefficient, t
probability that a particle injected into a well will stick. A
simple way for achieving this goal is to employ the flux ov
population method developed by Kramers@3#. Within its
scope, the escape rate is defined as the ratio of a statio
diffusion current at the top of the barrier to the population
the well. Accordingly, we have to look for a current carryin
stationary probability densityP(x,v,y), which smoothly
matches the equilibrium distributionPeq(x,v,y) in the well
and vanishes beyond the barrier. The two stationary dens
are related by a form functionj(x,v,y),

P~x,v,y!5j~x,v,y!Peq~x,v,y!. ~3.15!

Since bothP(x,v,y) andPeq(x,v,y) are stationary solutions
of the Fokker-Planck equation, the form function is det
mined from
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H 2v
]

]x
1@V8~x!2y1#

]

]v
1~h1v2g1y12y2!

]

]y1
1b21g1p1

]2

]y1
2

1~h2y12g2y22y3!
]

]y2
1b21g2p2

]2

]y2
2

1•••

1~hmym212gmym!
]

]ym
1b21gmpm

]2

]ym
2 J j~x,v,y!50. ~3.16!

Once the form function is known, the reactive flux formula yields for the transmission coefficient

m5F ~2p/b!m)
i 51

m

p i G21/2E
2`

`

dvE
2`

`

dy1•••E
2`

`

dymPeq~0,v,y!
]j~0,v,y!

]v
. ~3.17!
ng
in
e
-

n
h

r

in
e

e
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e

The chain of approximations that will be made for solvi
Eq. ~3.16! is analogous to that of the standard saddle po
approximation@3,20#. First, we assume that the height of th
potential barrierE is sufficiently large compared to the en
ergy of thermal motion,bE@1, so that the immediate regio
close to the barrier top dominates the dynamics. In suc
case, the potentialV(x) entering Eq.~3.16! can be approxi-
mated by its barrier partU(x). The latter is notnecessarily
parabolic, it may be a sum of arbitrary~parabolic and non-
parabolic! terms,

U~x!52 1
2 v2x22

a

a
uxua2•••. ~3.18!

Next we assume thatj(x,v,y) is a function of some linea
combination of the variables

j~x,v,y!5j~r !, r 5Rxx1Rvv1R1y11•••1Rmym .
~3.19!

Then, it is not difficult to check by direct substitution that
leading order inr and (bE)21 the respective approximat
solution to Eq.~3.16! reads

j~x,v,y!5ZE
nr

`

dqebU~q!, ~3.20!

where

n5~Rx
22v2Rv

22v2q!21/2, ~3.21!

with

q5(
i 51

m

p iRi
2 , ~3.22!

and whereZ is a normalization constant defined by the r
quirement that the form functionj(x,v,y) approaches unity
in the initial well and zero in the product side

Z215E
2`

`

dxebU~x!. ~3.23!

The rest of the parameters involved in Eq.~3.19!,
(Rx ,Rv ,R1 , . . . ,Rm), constitute an eigenvector of the m
trix
t

a

-

1
0 2v2 0 0 . . . 0 0

21 0 h1 0 . . . 0 0

0 21 2g1 h2 . . . 0 0

0 0 21 2g2 . . . 0 0

• • • • • •

• • • • • •

• • • • • •

hm

0 0 0 0 . . . 21 2gm

2 ,

~3.24!

corresponding to a single positive eigenvaluel. The eigen-
values of this matrix admit a continued fraction expans
@19#

l5
v2

l1

h1

l1g11

h2

l1g21
•••

hm

l1gm
, ~3.25!

from which it immediately follows thatl is the positive
solution of the implicit Kramers-Grote-Hynes relation, E
~2.9!. As to the associated eigenvector, its first compone
have the form

Rx51, Rv52l/v2, R15~12l2/v2!/p1 ,

R25@~l1g1!~12l2/v2!2l/v2#/p2 , ~3.26!

while the rest ofRi( i .2) are determined by the recurrenc
relation

Ri 115@~l1g i !Ri1Ri 21#/h i 11 . ~3.27!

Inserting Eq. ~3.20! into Eq. ~3.17!, one obtains in a
straightforward way~for more details, see the Appendix! the
following expression for the transmission coefficient:

msd5Z~11qv4/l2!21/2E
2`

`

dx

3expFbU~x!2 1
2 bv2x2S v2

l21qv4
21D G .

~3.28!
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The last equation agrees in the strong damping limit with
transmission coefficient following from the correspondi
Smoluchowski equation@21#

msd~g→`!5H gA b

2pE2`

`

dxebU~x!J 21

, ~3.29!

and reduces to unity at zero damping. It may also be no
that for a parabolic barrier, Eq.~3.28! reproduces the exac
Kramers-Grote-Hynes result, Eq.~2.10!, while for a purely
nonparabolic barrier (v50) it gives

msd~v50!5Z~11qg2!21/2E
2`

`

dx

3expFbU~x!2
bg2x2

2~11qg2!
G . ~3.30!

The non-Markovian dynamics of the system only enters
~3.30! through the factorq. The latter is defined by Eq
~3.22!, where the componentsRi of the eigenvector take fo
v50 the form

R151/p1 , R25~g111/g!/p2 ,
~3.31!

Ri 11~ i>2!5~g iRi1Ri 21!/h i 11 .

In the case of Ohmic dissipation, Eq.~3.30! reproduces the
result of Berezhkovskiiet al. @16#

msd
Ohmic~v50!5ZE

2`

`

dxexp$b@U~x!2 1
2 g2x2#%,

~3.32!

which is a straightforward generalization of various differe
transmission coefficients available in the literature for no
parabolic barriers.

To conclude this section we note that for a bistable sys
with a high potential barrier and minima atx6 the barrier
part U(x) can be replaced by the bare potentialV(x) itself.
Then, the integration in the above equations has to be
formed with the lower and upper limits atx2 and x1 , re-
spectively. The same can also be done for a metastable
tential, in which case the integration has to be restricted
the barrier region with a lower limit at, say,xw and the upper
limit at a value beyond the barrier from where the recross
probability of a particle with zero initial velocity can safe
be neglected. Moreover, the present rate formula, Eq.~3.28!,
can be improved if one employs instead of the flux ov
population expression, Eq.~3.17!, a Rayleigh quotient
@20,22# with the same approximate form function as te
function. The barrier frequencyv entering Eqs.~3.20!–
~3.27! may then be left and treated as a variational param
even if the barrier is purely nonparabolic@17#. Finally, the
approximate form function itself can systematically be i
proved by means of a perturbation theory using Eq.~3.20! as
an unperturbed solution@22#.

C. Energy loss

Next we outline an alternative to the naive approximat
for the energy loss, Eq.~3.6!. Recall that this approximation
e
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has been obtained in terms of the underdamped particle
namics, Eq.~3.5!, and therefore may fail considerably in th
limit of intermediate and strong damping. The validity of th
last statement becomes apparent from the following
ample. Let us consider for a moment the motion of a parti
in a metastable well with an exponentially decaying fricti
kernel of the form

g~ t !5~g/t!e2t/t, ~3.33!

where the correlation timet of the noise is assumed to b
independent of the static frictiong. With Eq. ~3.33! it is not
difficult to see that wheng→` the naive approximation for
the energy loss also goes to infinity, regardless of the bar
height. By definition, however, the energy loss cannot
larger than the barrier height.

An obvious way to correct the naive approximation is
take into account the dissipative and fluctuating terms fu
neglected in Eq.~3.5!. This can be achieved by introducin
the mechanical energy«

«5 1
2 ẋ21V~x! ~3.34!

and averaging the difference

«~0!2«~ t !5E
0

t

duE
0

u

dsẋ~u!g~u2s!ẋ~s!2E
0

t

duẋ~u! f ~u!

~3.35!

over trajectoriesx(t) that start at the top of the barrier wit
x(0)5 ẋ(0)50 and traverse the metastable region once. I
clear that the stochastic energy loss so determined will
valid in the whole friction range, though realization of th
above strategy is far from straightforward.

Instead, we suggest an effective way to reach the sa
goal without extraordinary computational effort. The ke
idea of our approach is the observation that for large pot
tial barriers,bE@1, the stochastic dynamics governed
Eqs.~2.1! and ~2.2! can be well approximated by the dete
ministic equation of motion. The latter becomes more e
dent, if one rescales the variables of the GLE by the bar
height as

t→tAbE, x→xAb, g~ t !→g~ t !/~bE!,

V~x!→V~x!/~bE!.

This rescaling renders the deterministic contribution ind
pendent of the barrier height and the noise term proportio
to the inverse square root of the barrier height,

ẍ52V8~x!2E
0

t

dsg~ t2s!ẋ~s!1~bE!21/2f ~ t !,

~3.36!

^ f ~ t ! f ~0!&5g~ t !.

Hence one may split the equations of motion into a lead
contribution, describing the deterministic dynamics

ẍ52V8~x!2E
0

t

dsg~ t2s!ẋ~s!, ~3.37!
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and the fluctuating correction (bE)21/2f (t) and construct a
perturbation expansion in powers of the inverse bar
height 1/(bE).

For high potential barriers,bE@1, a good approximation
for the energy loss is already attained in zero order in
perturbation. In this case, the energy loss is determined f
the unperturbed equation of motion, Eq.~3.37!, for the
asymptotic trajectory that starts at the barrier with ene
close to zero and periodT→`. Since no explicit solutions o
Eq. ~3.37! are known, it must be solved numerically wit
initial conditions

x~0!50, ẋ2~0!!1. ~3.38!

The numerical solution of Eq.~3.37! does not present a mor
difficult problem than that of the zero-order equation of m
tion for the unstable moder, Eq. ~2.16!. High efficiency is
achieved by making use of a fourth-order symplectic integ
tor developed in a previous paper@23#. The energy loss is
determined as

D52bV~x2!, ~3.39!

where x2 is the point at whichẋ(t) crosses zero for the
second time. Typical asymptotic trajectories and ene
losses are shown in Fig. 1 for a Markov double well proce
The utility of the present approach was already tested
Brownian motion in different types of parabolic barrier p
tentials @23,24#. We found that its implementation is a
simple as that of the naive approximation, Eq.~3.6!, and still
results in an accurate estimate for the energy loss valid in
full friction range. In Sec. IV we shall show that our metho
works quite accurately for cusped and quartic potentials
well. It may also be noted that for low barriers, a furth

FIG. 1. Asymptotic deterministic trajectories~for g50.05, 2,
and 13! and energy loss, Eq.~3.39!, for a Markov rate process in a
symmetric double well potential, Eq.~4.1! with a52, b54, and
bE510.
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improvement of the method can be obtained by taking i
account the noise termf (t). A simple way of doing so is to
employ the systematic expansion around the determin
path proposed by van Kampen@25#. The approach based o
Eqs. ~3.28! and ~3.37!–~3.39! will be referred to as thede-
terministicapproximation.

IV. APPLICATIONS

The aim of this section is twofold. First, we want t
present exact numerical rate constants in potentials of dif
ent shapes that would allow one to test various analyt
predictions. One might, at first, believe that this mat
should have been settled long ago, mainly because o
continuous importance in many problems of chemical ph
ics. To the best of our knowledge, however, there are
numerical solutions of such a type, other than those obtai
in Refs.@15# and@16# under the assumption that the potent
consists only of a barrier part. This assumption results i
monotonicdependence of the transmission coefficient on
static frictiong; the coefficient increases with decreasingg
and reaches its maximal value at zero damping, when the
no coupling between the system and the bath. It is clear
the data so obtained are not suited for testing analytical
dictions for the rate in the most problematic intermediate a
weak damping regions. Second, we wish to test the accu
of the various approaches discussed above by compa
them with exact numerical rates.

A. Exact numerical results

To achieve the above goals, we consider four spec
examples. The examples include a non-Markovian mo
with a piecewise harmonic potential and Markovian ac
vated rate processes in a symmetric double well of the fo

V~x!5
E

b2aFaS x

xw
D b

2bU x

xw
UaG , 0,a,b, ~4.1!

whose barrier part

U~x!52
bE

b2aU x

xw
Ua

~4.2!

varies with the parametera from cusped (0,a<1) to
smooth (1,a,2), parabolic (a52), and higher order (a
.2) barriers, see Fig. 2. In the former case we shall comp
with the numerical simulation data of Straub, Borkovec, a
Berne~SBB! @26#. While for the Markov processes compar
son will be made with numerical rate constants obtained
the present author. It may be noted that the problem of ev
ation of the escape rate in a double well is equivalent
finding the least nonvanishing eigenvalue of the Fokk
Planck equation. For a symmetric potential, this eigenva
is given by twice the rate, Eq.~2.4!, where the transmission
coefficient can be written as@4#

m5msdA
2~D!/A~2D!. ~4.3!

The method used to numerically solve the Fokker-Plan
equation is described in a previous paper@27#. The calcula-
tions were performed in the potential~4.1! with bE510 and
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2872 PRE 58ALEXANDER N. DROZDOV
xw51 for a parabolic (a52, b54), cusped (a51, b54),
and quartic (a54, b56) barrier. The exact numerical est
mates of the least nonvanishing eigenvalue for a large in
val of g are presented in Table I and exhibited in Fig.

FIG. 2. Different shapes of the potentialV(x), Eq. ~4.1!, and
numerically exact transmission coefficients for a cuspeda
51, b54, dashed line!, parabolic (a52, b54, solid line!, and
quartic (a54, b56, dot-dashed line! barrier. The numerical data
are also presented by lines for an eye guide convenience only

TABLE I. First nonzero eigenvalue in a symmetric double w
potential, Eq.~4.1!, with bE510 andxw51, for different values of
g and for different barrier shapes. Exponential notation@k# means
that the number preceding is to be multiplied by 102k.

g a51, b54 a52, b54 a54, b56
cusped parabolic quartic

0.01 0.365@5# 0.399@5# 0.485@5#

0.05 0.144@4# 0.171@4# 0.195@4#

0.1 0.247@4# 0.304@4# 0.350@4#

0.25 0.456@4# 0.593@4# 0.705@4#

0.5 0.640@4# 0.868@4# 0.107@3#

0.75 0.735@4# 0.100@3# 0.128@3#

1 0.791@4# 0.106@3# 0.138@3#

1.5 0.840@4# 0.109@3# 0.143@3#

2 0.856@4# 0.106@3# 0.138@3#

3 0.862@4# 0.997@4# 0.122@3#

4 0.858@4# 0.925@4# 0.107@3#

6 0.838@4# 0.797@4# 0.853@4#

8 0.806@4# 0.692@4# 0.700@4#

10 0.770@4# 0.607@4# 0.590@4#

20 0.564@4# 0.361@4# 0.323@4#

30 0.439@4# 0.251@4# 0.220@4#

100 0.145@4# 0.780@5# 0.674@5#

1000 0.147@5# a 0.783@6# a 0.675@6# a

aExact estimate of the eigenvalue calculated from the respec
Smoluchowski equation.
r-
,

together with the potential shapes. These results provide
necessary foundation for testing various rate expression
all regimes of physical interest, from the extremely und
damped Brownian motion to the strong friction~Smolu-
chowski! limit. As evidenced by the figure, the transmissio
coefficient for the cusped potential is larger than those for
two other potentials. Moreover, in contrast to the latter it h
a well pronounced plateau (m'1) in the intermediate damp
ing region. This is explained by the fact that with decreas
damping the spatial diffusion transmission coefficientmsd in
the cusped potential reduces to unity faster than in
smooth potentials.

B. Comparison of the theoretical approaches
with numerical results

It should be pointed out here that the three approache
the turnover problem, outlined in Secs. II and III, differ fro
each other even though the barrier is parabolic. The dif
ence arises due to the different approximations for the ene
loss. Therefore it would be instructive to begin our compa
son with the parabolic barrier model used by PGH@7# for
testing their turnover theory. The dynamics of the mode
that of a particle moving in the piecewise continuous h
monic potential

U~x!5H 2E1 1
2 vw

2 ~x1xw!2, x,2x*

2 1
2 v2x2, x>2x* ,

~4.4!

with

xw5~11v2/vw
2 !x* , E5 1

2 v2x* xw , ~4.5!

and experiencing an exponential friction kernel of the for

g~ t !5a21exp~2t/ag!. ~4.6!

The above model was studied numerically by SBB@26#, who
computed the escape rate for a large range of paramete

The numerical results for the transmission coefficient o
tained from the SBB simulation data are presented in Fig
together with the predictions of the three theoretical a
proaches discussed above. Also shown are the respectiv
proximations for the energy loss. As anticipated, the th
approaches coincide with each other in the weak damp
region (g,0.1). In the intermediate damping region (0
,g,10) the difference between the various approximatio
for the energy loss becomes noticeable, though this does
reflect on the transmission coefficient. The reason is that
energy loss is sufficiently large in this region (D*bE@1)
to reduce the depopulation factorA(D) to unity. Finally, in
the strong damping region (g.10) the deterministic ap-
proach and the PGH theory are characterized by a sim
accuracy, while the naive approach overestimate the rate
one order of magnitude.

The same, however, is not true for a rate process, wh
bath correlation time is independent ofg. In such a case, the
escape dynamics does not lead to an energy diffusion c
trolled regime asg goes to infinity. Instead, it is characte
ized by large energy loss at large damping such thatA(D)
'1; accordingly, the naive approach provides an accu

ve
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PRE 58 2873THEORY OF NON-MARKOVIAN ACTIVATED RATE . . .
description of the rate in the strong damping limit as we
The latter is seen from Fig. 4, which shows the energy l
and the transmission coefficient in a parabolic barrier pot
tial with Ohmic friction. As evidenced by the figure, th
naive approach remains correct in the whole damping ran
On the other hand, this approximation is least favorable
systematically overestimates the rate. The deterministic
proach is in better agreement with numerical calculatio
than the two other approaches for all values ofg excepting
g;1. Forg;1 the best agreement is achieved with the PG
theory. It may also be pointed out that in the weak damp
limit ( g!1) all the approaches are relatively inaccurate a
overestimate the rate by;18%.

Next we apply the naive and the deterministic approac
to a cusp shaped barrier, Eq.~4.1! with a51 andb54. The
exact values of the transmission coefficient for the cus
double well potential are presented in Fig. 5, together w
the theoretical predictions. The figure shows that the t
approximations are characterized by a similar accuracy.
deterministic approach is better in the low damping regi
while the naive approach gives better results in the inter
diate damping regime. In the strong damping limit both d
viate from the exact result by roughly the same amount,
deterministic approach underestimates the rate, while the
ive approximation overestimates it. It is remarkable that
errors obtained for the cusped barrier are comparable
those for the parabolic barrier~cf. Figs. 4 and 5!. The latter
allows us to conclude that the ansatz~3.1! works quite well
even though the timeT taken by the deterministic particle t
go from the barrier and back to it is finite. This result is n
surprising because periods of particle oscillation do not e
the integral equation in energy variables used by MM in th
derivation of the depopulation factor, Eq.~2.12!. The equa-

FIG. 3. Energy loss and transmission coefficient for the S
model, Eqs.~4.4!–~4.6! with bE520, v/vw52, and v2a54/3.
Dot-dashed lines: PGH theory; dashed lines: naive approxima
solid lines: deterministic approach; circles: exact numerical resu
.
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tion depends only on the action along the barrier trajecto
which is always finite regardless of whether or not the c
responding period is infinite.

Finally, we consider the rate of escape over a quartic b
rier, Eq.~4.1! with a54 andb56. The naive and the deter
ministic predictions for the symmetric quartic double we
potential are compared in Fig. 6 with the numerical rates
is seen that in this case both approximations give an up
bound to the exact result for the rate. The deviation of
deterministic approach from the numerical results var
from ;2% in the strong damping limit, reaches a maximu
of ;30% at g;3 and decreases to;14% in the weak
damping region. The error made by the naive approximat
is larger than that of the deterministic approach everywh
except for the intermediate damping region (1,g,10).

V. CONCLUDING REMARKS

In this paper, we presented accurate calculations of th
mally activated rates in a symmetric double well potent
with parabolic, cusped, and quartic barriers. The results w
used to analyze the relative validity of two approaches to

n;
s.

FIG. 4. Energy loss, transmission coefficient, and percent
error @1003 (approximate – exact)/exact# made inm for a Mar-
kov parabolic double well, Eq.~4.1! with a52, b54, and bE
510. Dot-dashed lines: PGH theory; dashed lines: naive appr
mation; solid lines: deterministic approach; circles: exact numer
results.
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2874 PRE 58ALEXANDER N. DROZDOV
calculation of the escape rate in arbitrarily shaped potent
The basic idea underlying the approaches is the assump
that the MM ansatz for the transmission coefficient, E
~3.1!, is correct without regard to the barrier shape. An a
proximate rate expression was then constructed by usin
generalized energy loss of the underdamped determin
dynamics, Eq.~3.6!, and the standard Kramers-Grote-Hyn
transmission coefficient with an effective barrier frequen
v given by Eq.~3.2!. This naive approximation is generall
robust for Markov activated rate processes and may fail c
siderably for non-Markovian systems, which exhibit an e
ergy diffusion controlled regime in the strong damping lim
An alternative approach free of this drawback consists
using a properly defined energy loss of the deterministic
namics and a generalized Kramers-Grote-Hynes transmis
coefficient obtained by means of the flux over populat
method. The resulting rate expression approaches the co
limiting behavior for both weak and strong friction. It gen
eralizes in a natural way various different rate formulas t
are available in the literature for parabolic and nonparab
barriers. Numerical applications showed this approach to
superior over the naive approximation for the escape r
Yet another important finding revealed in our calculations
that the finite period of oscillation along the determinis
barrier trajectory is not an obstacle for the application of
MM ansatz~3.1!. The latter, however, is obviously true fo

FIG. 5. Same as in Fig. 4 but for a cusped barrier, Eq.~4.1! with
a51, b54.
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Ohmic dissipation and may not be a generic case for n
Markovian processes. If the noise correlation time is lon
than the period of the barrier trajectory, then the Mel’nik
derivation is not necessarily correct. Therefore, care mus
taken when applying the MM ansatz to non-Markovian ac
vated rate processes in a cusp shaped potential.

For parabolic barriers our comparison also included
sults from the PGH turnover theory. We found that in t
limits of weak and strong damping the PGH theory and
deterministic approach are characterized by a similar ac
racy. In the intermediate damping region the PGH theory
in better agreement than the two present approaches.
naive approximation gives the worst approximation to t
exact results in both limits of weak and strong damping a
works better than the deterministic approach in the interm
diate damping domain.
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FIG. 6. Same as in Fig. 4 but for a quartic barrier, Eq.~4.1! with
a54, b56.
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APPENDIX A

In this appendix we outline the central result of Sec. III
as given in Eq.~3.28!. Inserting Eq.~3.20! into Eq. ~3.17!
and integrating over the Gaussian~environmental! variables
yi yields for the transmission coefficient

msd5Z~detM !21/2E
2`

`

dxexpFbU~x!2
bv4x2

2n2l2

3S 12
v4

l2 (
i , j 51

m

Mi j RiRjAp ip j D G , ~A1!

where the matrixMi j reads

Mi j 5d i j 1~v4/l2!RiRjAp ip j . ~A2!

By explicitly evaluating the determinant of this matrix an
its inverseMi j , it is possible to prove that@20#

detM511~v4/l2!q ~A3!

and

Mi j 5d i j 2
v4RiRjAp ip j

l21v4q
, ~A4!

whereq is defined by Eq.~3.22!. With these findings it is a
simple matter to go from Eq.~A1! to the final result, Eq.
~3.28!.

Before closing the Appendix we would like to show th
Eq. ~3.28! agrees in the limiting case of high friction with th
transmission coefficient obtained from the correspond
m.
g

Smoluchowski equation, Eq.~3.28!, and in the limit of weak
friction with the TST result,mTST51. To simplify the proof,
we rescale the memory functiong(t)5gg̃(t) and assume
that the expansion coefficientsh̃ i and g̃ i of the rescaled

Laplace transformĝ̃(z) remain finite whatever the static fric
tion coefficientg is. Under this assumption, one finds th
for g→` the eigenvaluel and the componentsRi of the
eigenvector go to zero as

l5v2/g, Ri5ci /g, q5c/g,

whereci and c are regular functions ofg. Thus Eq.~3.28!
reduces to

msd~g→`!5Z~cg!21/2E
2`

`

dxexp@bU~x!2 1
2 b~g/c!x2#.

~A5!

The integral in the last equation is dominated by its Gauss
contribution and can be evaluated analytically to yield E
~3.29!, as we set out to prove. On the other hand, for vani
ingly weak friction (g→0) one has

l5v, Ri5ci , q5cg.

Consequently,

msd~g→0!5Z~11cgv2!21/2E
2`

`

dx

3exp@bU~x!2 1
2 bcgv2x2#, ~A6!

from which it immediately follows the desired resultmsd(g
50)51.
u.
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